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O N  A C L A S S  O F  I N T E R N A L  S O L I T A R Y  W A V E S  I N  A T W O - L A Y E R  F L U I D  

Zh. L. Mal ' tseva UDC 532.51 

Solitary waves on an interface between two fluids are considered. A uniform asymptotic 
expansion is constructed for internal solitary waves with fiat crests (of the plateau type) that 
degenerate into a bore in the limit. It is shown that, in this case, in contrast to a Korteweg-de 
Vries wave, the wave amplitude is of  the same order of smallness as the longwave approximation 
parameter. 

Ovsyannikov [1, Chap. 1] classified possible types of stat ionary waves in a two-layer fluid under a rigid 
lid within the second approximation of shallow water theory, and Funakoshi [2] gave a classification of these 
waves using the Korteweg-de Vries equation with quadratic and cubic nonlinearities. The  existence theorem 
for solitary waves in a two-layer fluid (in an exact formulation) was proved by Khabakhpasheva [3] and Amick 
and Turner [4]. The existence of bore-like solutions of Euler equations was proved by Amick and Turner [5] 
and Makarenko [6]. 

Funakoshi and Oikawa [7] and Turner  and Vanden-Broeck [8] studied numerically solitary waves in 
two-layer flows without shear that  become a bore as their ampli tude and velocity tend to critical values. 
Mirie and Pennell [9] analyzed this s i tuat ion by semianalytical methods for a long-wave approximation of 
ninth-order  accuracy in amplitude.  

1. B as i c  E q u a t i o n s .  Steady two-dimensional irrotational flow of an ideal incompressible two-layer 
fluid in a gravity field is considered. It is assumed that  at infinity the velocities of the layers are Ui, where 
i = 1 and 2 (subscript 1 refers to the lower layer and subscript 2 refers to the upper  layer). The  flow domain 
is a strip of width H = H1 + / / 2  divided by a contact discontinuity line 71 into two curvilinear strips fli. The 
fluid is bounded by a flat bo t tom (70: y = 0) and a flat rigid lid (72: y = H). 

The equations of motion written in terms of the s t ream function are 

r  + ~bvv = 0 in ~1 [--J ~2, 

r = 0 on 70, 

r  [ p ( r 1 6 2  on 3'1, 

r  on 72, 

r Vr  Vr Ixl oc. 

(l) 

Here brackets denote a j ump  of a corresponding quantity at the interface between the layers, Qi = UiHi and 
pi are the discharge rates and densities in the  layers, b is the Bernoulli constant, and r is the s tream function 
of the unper turbed piecewise-constant flow: 

r = / yQ1/H1, 0 < y < H1, 

t Q1 + (y - H1)Q2/H2, HI < y < ti. 

The problem is to find a nontrivial solution different from this flow. 

Lavrent 'ev Insti tute of Hydrodynamics,  Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 5, pp. 55-61, 
September-October,  1999. Original article submit ted April 1, 1998. 

~ 2 . 4  0021-8944/99/4005-0824 $22.00 @ 1999 Kluwer Academic/Plenum Publishers 



Fr 2 

1 

0 1 Fr I 

Fig. 1 

We introduce dimensionless variables using H1 as the length scale, Q1 as the scale for the stream 
function in the lower layer, and Q2/r  (r = H2/H~) as the  scale for the stream function in the upper layer. 
The characteristic dimensionless parameters of the problem are the Froude numbers  

rr - U2 
g H pl - p2 

The Mises transformation (x, y) ---, (x, ~b) maps the flow domain onto the double strip 

l-I = II] U I12, l-Iz = (0, 1) x N ,  He = (1, 1 + r) x R,  

where r is the ratio of the unperturbed depths of the layers. 
We seek streamlines of the form 

where e is a long-wave approximation parameter,  which is defined below. 
In the dimensionless variables, the system of equations for w takes the form 

where 

e2w~:~: + wr162 = div Q(Vw, r 

't/) = 0 ,  

9 [~1 = 0, [ F r - ~ ]  + h - l ~  = [Fr2Q~(Vw)], 

w ~ 0 ,  Vw--+0,  

0 < ~ b <  1, l < r  

~=0 ,  ~ = h ,  

~p=l, 
(2) 

3 2 9 2 3 (C3WzW~b l e wz + 3cw~ + 2e w~) 

Q = (QI, Q~) = 1 + ~w------~' 2 (1 + ~w~)2 , 

and Fr = Fri in Hi. 
2. P r e l i m i n a r y  A n a l y s i s .  The problem (2) linearized over the piecewise-constant flow with specified 

Fr{ and r have solutions in the form of elementary wave packets 

w(x, r  = w ( ~ )  e - i ~ ,  

if ee is related to the parameters  of the main flow by the dispersion relation 

A(~e) -- Fr~aecoth ae + F r ~ e c o t h  (rae) - ( r  + 1) -1 = 0. (3) 

Real roots of Eq. (3) exist only if 

Frl 2 + r - lFr~  ~< (1 + r) -1. (4) 

This inequality defines a spect rum of linear waves. The  shaded region in Fig. 1 corresponds to inequality (4). 
The boundary of the spec t rum consists of bifurcation points for solutions of the problem. At these points 
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branching of long stationary waves from the piecewise-constant flow occurs. In particular, it is shown [1.6] 
that  for 

IFrll + [Fr2l-- 1 ( 5 )  

there exists a one-parameter  solution of tile problem in the form of a bore. We shall consider the family of 
solutions for pairs of Froude numbers  (Frl and Fr2) lying in the supercritical region (outside the ellipse) in 
the neighborhood of the point  

0 0 
(F, ,  F2) = (1/(1 + r), r/(1 + r)). (6) 

We introduce the parametr iza t ion  (Frl, Fr2) ~-+ (s, k) by the following rule. Let s be the least positive 
root of the equation 

Fr~s cot s + Fr~s cot (rE) - (r + 1) -1 = 0. (7) 

For the points (Frl,Fr2) outs ide  the ellipse (4), the dispersion function A(ee) has only purely imaginary 
conjugate roots, and ee = -t-is are the roots nearest to the real axis. The parameter  e is the index of exponential  
decay of the solution at infinity. Equation (7) is an analog of Stokes's formula for solitary surface waves 
Fr 2 = t a n c / e .  

The family of level curves of the second parameter  k consists of the ellipses 

( l - k ' ]  2 1 (  r ( l + l . k ) )  2 1 
kFrl + r - - - ~ /  + - kFr2 + - 0, (8) 

r r r + l  

each of which is tangent to the  sides of the square (5) at the point (6). As k varies from 0 to 1, these ellipses 
occupy the curvilinear sectors between the straight line Fr~ + Fr2 = 1 and the ellipse (4) (see Fig. 1). 

0 0 
The parametrizat ion (7), (8) has a singularity at the point (F1,F2), which is a consequence of the 

behavior of the solution in the  neighborhood of the point. The  Froude numbers are expanded in power series 
i n c  

o o  
n 

Fri= E sn Fi, 
n=O 

where the coefficients of the  series are given by 

l 1 1 l 

F l =  0(1 + r)x/Y'L--k ' F2= - F1, 

O) 
2 1 2r 2 + k r  2 - 2 r - k r + k  z 1 r ( r 2 k - 2 r - k r + k + 2 )  

F I = -  , F2 = -  
6 (k - 1)(r + 1) 6 (k - 1)(r + 1) 

Herc 0 = ~/3(r + 1)/(r(r 3 + 1)). 
3. Coef f i c i en t s  o f  t h e  P e r t u r b a t i o n  Ser ies .  Substitution of w in the form of the power series in 

OO 

W .-~ E Enwn 
n-~O 

into (2) yields the following sequence of systems of equations for w,~: 

w,no~ = gn in Hi; (10) 

w 0 = 0  for ~ = 0 ,  h; (LL) 

[w.] = 0 for ~ = 1; (15) 

Awn = ~,~ for ~b = 1. ([:3) 
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Here the differential operator A has the form 

0 0 
Aw = F  2 w,l,(x, 1 + 0 ) -  F 2 we(x,  1 - 0 )  + h - tw ( z ,  1), 

the right sides of (10) are 

3 
g0 = 0, gl = ~ (w~r162 g2 -'- --woxx -k- (3w0~wlr -- 2w0r162 , 

~ln --Wn-2,xx Jr- [3(WOCWn--I,r n t- WlCWn-2,r 2 = - 8w0r162162 + fl  (w0,. �9 �9 w=-3), 

and the right sides of (13) are given by 

~0 = 0, ~1 = - [ 2  F F  Wo~] + w0~ , 

1 0 1  0 2  0 0 0 1  
~2 = - [ F  2 Woe + 2 F F  Wlr + 2 F F  woe] + [3 F 2 wocw~r - 2 F 2 w~, + 3 F F  w2r 

0 1  0 0 

~= = [6 F F  wovwn-2,,~ + 3 F 2 (wo,hw~_t,r + WlCWn-2,q,) - 6 F 2 w2r 

o 1 0 2  1 
- [2 F F  wn-l,0 + (2 F F  + F2)wn-2,r + f2(w0, . . . ,  wn-3). 

The solutions of Eqs. (10)-(13) for n = i and n = 2 are 

WO(X,r = Co(x)W(~)) ,  W l ( X , r  = C l ( x ) W ( r  

where 

W = { ,r 
- h ) / ( 1  - h ) ,  I < 4, < h,  

h = l + r ,  

condition for equations of higher-order approximations. 
and the functions Co(z) and C1(x) remain undetermined and are obtained from the compatibility 

where 

The solutions of Eqs. (10)-(13) for n />  2 have the structure 

wn(x, g') = Cn(x)W(g,) + C, -2 (x )WI( r  + f ( C o , . . . ,  Cn-3), 

{ ~b3/6, 0 < fa < 1, 

W1 = (~b-h)a/(6r2) ,  1 < ~b < h. 

The following equation for the function Co(x) is obtained from (13) for n = 2: 

6h 9h 2 1 
CA' = P3(Co), P3(Co) - r(r3 + 1) C~ r ( r  3 + 1) F1 Co 2 + Co. 

Co = a 1 - tanh2(x/2) 
0(a 2 - tanh2(x/2)) ' 

Hence, 

(t4) 

where a + 1/a = -4-2/x/1 - k = 4-2(1 + r) F1 0. The plus sign corresponds to a wave level rise wave, and the 
minus sign corresponds to a depression wave. 

The functions C,~ for higher-order approximations are obtained from the recurrence formula 

C" - P~(Co)C~, = A ( C o , . . . ,  C,~-1). (15) 

For a flow without shear, it is shown [10] that  any solution of the original problem of internal waves with 
symmetric conditions at infinity is symmetric about the vertical axis. The even solution of Eq. (15) is uniquely 
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determined and given by 

X +Oo 

Cn = - u l  f fnu2 d x - u 2  f fnul  dx. 
o z 

Here ul,2 are fundamenta l  solut ions of the homogeneous equation, Ul = C~, and u2 is expressed in terms of 
ul using the Liouville formula  and  has the form 

/31 cosh 3x +/32 cosh 2x +/33x sinh x +/34 

u2 = (•5 "4-/36 coshx) 2 ' 

where fll = ( a6 + 3a4 + 3 a2 - 1)(a 2 - 1), ~2 = 16(a 2 - 1)3(a 2 4. 1) - 65a s 4. 4a 6 - 6a 4 4. 4a 2 - 65, /~3 = 

(60a 6 + 12a 4 -- 12a 2 -- 60)(a 2 -- 1), /34 = (--80a 6 -- 48a 4 -- 48a 2 -4- 80)(a 2 -- 1), /35 = ~/16a(a 2 -- 1)/0( a2 + 1), 

and .36 = ~/16a(a 2 - 1)/O(a 2 - 1). 

For n = 1, we have f l  = k4C~ + k3C g 4. k2C g with the coefficients given by 

(1 - r ) ( r  2 - k r  4. 2r  4- 1) 4 1 - -  r 3 5(7 .3 - r 2 4- r 4- 1) 
k2 = 202r2(r 4- 1)2(k - 1) ' k3 = 03r(r 4- 1 ) ~ / X - ~ r  2 4- r 5' k4 = 2r3(1 4- r3)O2(r 4- 1)" 

Hence, we obta in  the  following representat ion for C1: 

where 

a l c o s h  x + a2sinh x-  (In [(a - tanh  (x /2)) / (a  + t anh  (x/2))] + a3 
C1 = 

(a 2 -- 1)a4(a 2 + 1 + (a 2 -- 1)coshx) 2 

k 20a2 k 30a3 12a2(1 4"a2) 
C~l = 2 - ' - ~ - ( 1 4 . a 2 ) +  3 - ' ~ ' 4 . k 4  06 

a2 = 6k4a(a 2 - -  1)2/06, a3 = 4a2(a 2 - 1)(5k2 - 3k4/02)/04, ~ 4  ~--- 15r(r + 1). 

Plots of the functions Co and C1 for r = 1.2 and a = 1.0001 are shown in Fig. 2. 
4. A n a l y s i s  o f  t h e  S o l u t i o n .  We consider the flow regimes corresponding to the l imiting values of 

the parameter  k. 
In the approximat ion  obta ined ,  the interface between the layers is given by the formula 

y =  l + e a  1 - t a n h  2 (ex /2 )  + e 2 C l ( x  ) + O ( e 3 ) .  
O(a 2 - t anh  2 (~z/2))  

For fixed a or k, the wave ampl i tude is of the  same order of magni tude  as c. In the limit a ~ 1, as 

the point (Frl ,  Fr2) in the p lane  of Froude numbers  approaches the straight line Frl + Fr2 = 1, the ampli tude 
remains bounded. The  crest of the  solitary wave flattens,  and its front near the point x = a ln[(a - 1)/(a + [)] 
transforms to a bore (see Fig. 3). Here al and a2 are different values of the parameter  a. 

In the l imit  a -1 ,~ c -+ 0, we obtain a Kor teweg-de  Vries wave: 

y = 1 + e20-1cosh-2(sx)  + o(s2). 
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It is possible to relate the parameters (e,k) to the geometric parameters of the flow, e.g., to the 
amplitude A. As an additional parameter,  it is convenient to use the width L of the wave front, which is 
defined as the difference of the abscissas of the points at which the inflectional tangent to the wave intersects 
the lines y = 0 and y = 1/a (see Fig. 3), 0 < L ~< 4. We note that if we draw a vertical line through the point 
of tangency, the areas of the curvilinear triangles Sz and $2 bounded by the plot of the function Co and by 
its asymptotes are equal. As a first approximation, we have 

a = 2 -  L /4 ,  = A ( 2 -  L/4) /air + 1)/(r4 + r).  

In terms of (A, L), the Froude numbers are given by 

Frl - 1 1 80 - 16L + L 2 r 
r + l + 3-2 r + l A + O(Aa), F r 2 - - -  

For L = 4, i.e., for the bore, we obtain 

Fri = 1 1 r +-----~ + -~--~ A + O(,4a), F r 2 - - -  

1 80 - 16L + L 2 

r + l  32 r + l  

r 1 

r + l  r + l  
- -  A + O(A3) .  

A + O(A3). 

The effective length of the solitary wave that represents the distance between the points of inflection 
at the edges of the wave is given (in these variables) by 

8 - L  1 2 - L  
l -  In 

2 4 - L  

Conc lus ions .  We proposed an algorithm for constructing a uniform asymptotic solution of the problem 
of internal waves in a two-layer fluid under a rigid lid. The approximation obtained can be used to prove the 
existence theorem for an exact solution, which substantiates the technique employed herein. The family of 
internal solitary waves considered here is of interest because for a fixed amplitude there are no restrictions on 
the effective wavelength. As a consequence, such waves can transfer as much energy as one likes. 

The author is grateful to N. I. Makarenko for his interest in this work and for useful discussions. 
This work was done within the framework of project No. 43 (Siberian Division, Russ ianAcademy 

of Sciences) "Investigation of surface and internal gravity waves in a fluid" and supported by the program 
"Leading scientific schools" (Grant 96-15-96283). 
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